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learning techniques.'#® One of us had already suggested in a previous paper'*’ that
developing the capacity for invention (or “learning invention”) should be understood
on the background of ancient rhetorical practice and of the corresponding treatises.
This comparison with rhetorical practice, for the sake of completing our reading
and explaining in more detail how indeed the progressivity of problems might lead
one to invention, that is, to become capable of “inventing” positions for converting
problems to equations, is the objective of another study that we are now preparing.
What this article essentially provides, in this respect, is a reasonably firm basis for
such a complementary study. Our purpose, indeed, is to compare in some detail the
progressivity of Diophantus’s treatments of problems and the necessary progressivity
of rhetorical exercises; for this, we need to have a clear idea of how the problems are
arranged and according to which plausible transitions. Only when this comparison will
be completed shall we be in a position to re-evaluate Hankel’s judgement, which really
was about learning how to solve problems and not just about their factual arrangement.

Acknowledgments We thank Bernard Vitrac for his insightful remarks and corrections on a preliminary
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the last version.

Appendix 1: the conspectus
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146 Tndeed, arbitrary presuming that “learning” something has a straightforward meaning, which is immedi-
ately understandable, generally amounts to introduce an anachronism. The latter goes all the more unnoticed
that it is easy to commit: we are all bent to presume that the way we learn, either by listening, writing, or
reading, is universal, as if the ways by which we were taught were timeless.

147 (Christianidis 2007, 293).
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Appendix 2: abbreviations used

The abbreviations used in this article are partly inspired by the ones used by Paul
Ver Eecke in the comments accompanying his French translation of the Arithmetica
(Diophante 1959). However, they are completed here by some specific signs for several
crucial notions or procedures that are discussed for the first time in this article. Note,
however, that this system of ‘transcription’ has intrinsic limits that become obvious in
the case of operations (see below).
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